ADVANCED PLACEMENT PHYSICS 1 TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS

Universal gravitational constant,

$$G = 6.67 \times 10^{-11} \,\text{m}^3/(\text{kg} \cdot \text{s}^2) = 6.67 \times 10^{-11} \,\text{N} \cdot \text{m}^2/\text{kg}^2$$

1 atmosphere of pressure,

1 atm = 1.0×10^5 N/m² = 1.0×10^5 Pa

Magnitude of the acceleration due to gravity at Earth's surface, $g = 9.8 \text{ m/s}^2$ Magnitude of the gravitational field strength at Earth's surface, g = 9.8 N/kg

PREFIXES					
Factor	Factor Prefix Symbol				
10 ¹²	tera	Т			
10 ⁹	giga	G			
10^{6}	mega	M			
10 ³	kilo	k			
10^{-2}	centi	c			
10^{-3}	milli	m			
10 ⁻⁶	micro	μ			
10 ⁻⁹	nano	n			
10^{-12}	pico	p			

	hertz,	Hz	newton,	N
UNIT	joule,	J	pascal,	Pa
SYMBOLS	kilogram,	kg	second,	S
	meter,	m	watt,	W

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	∞

The following conventions are used in this exam:

- The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- Air resistance is assumed to be negligible unless otherwise stated.
- Springs and strings are assumed to be ideal unless otherwise stated.
- Fluids are assumed to be ideal, and pipes are assumed to be completely filled by fluid, unless otherwise stated.

Rectangle	Rectangular Solid		A = area	Right Triangle
A = bh	$V = \ell w h$		b = base C = circumference	$a^2 + b^2 = c^2$
Triangle	Cylinder	s	h = height	$\sin \theta = \frac{a}{a}$
$a = \frac{1}{bh}$	$V = \pi r^2 \ell$	$\langle \theta \rangle^r$	$\ell = \text{length}$	$\begin{pmatrix} c \\ h \end{pmatrix}$
$A = \frac{1}{2}bh$	$S = 2\pi r\ell + 2\pi r^2$		r = radius s = arc length	$\cos\theta = \frac{b}{c}$
Circle	Sphere		S = surface area $V = $ volume	$\tan \theta = \frac{a}{b}$
$A = \pi r^2$	$V = \frac{4}{3}\pi r^3$	\/	w = width	c
$C = 2\pi r$	3		θ = angle	90° _Γ
$s = r\theta$	$S = 4\pi r^2$			b

MECHANICS AND FLUIDS

a = acceleration

d = distance

E = energy

J = impulse

k = spring constant

r = radius, distance, or

K = kinetic energy

p = momentum

position

U = potential energy

v = velocity or speed

F =force

m = mass

P = power

t = time

W = work

x = position

v = height

 θ = angle

$v_x = v_{x0} + a_x t$
$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$
$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$
$\vec{x}_{\rm cm} = \frac{\sum m_i \vec{x}_i}{\sum m_i}$
$\vec{a}_{\rm sys} = \frac{\sum \vec{F}}{m_{\rm sys}} = \frac{\vec{F}_{\rm net}}{m_{\rm sys}}$
$\left \vec{F}_g \right = G \frac{m_1 m_2}{r^2}$
$\left \vec{F}_f \right \leq \left \mu \vec{F}_n \right $
$\vec{F}_s = -k\Delta \vec{x}$
$a_c = \frac{v^2}{r}$
$K = \frac{1}{2}mv^2$
$W = F_{\parallel} d = F d \cos \theta$
$\Delta K = \sum W_i = \sum F_{\parallel,i} d_i$
$U_s = \frac{1}{2}k(\Delta x)^2$
$U_G = -\frac{Gm_1m_2}{r}$
$\Delta U_g = mg\Delta y$
$P_{\text{avg}} = \frac{W}{\Delta t} = \frac{\Delta E}{\Delta t}$
$P_{\text{inst}} = F_{\parallel} v = F v \cos \theta$
$\vec{p} = m\vec{v}$
$\vec{F}_{\text{net}} = \frac{\Delta \vec{p}}{\Delta t} = m \frac{\Delta \vec{v}}{\Delta t} = m \vec{a}$
$\vec{J} = \vec{F}_{\text{avg}} \Delta t = \Delta \vec{p}$
$\vec{v}_{cm} = \frac{\sum \vec{p}_i}{\sum m_i} = \frac{\sum m_i \vec{v}_i}{\sum m_i}$